Thursday, June 21, 2018

Indigenous Reconciliation Medicine Wheel Garden at Frederick Banting Alternate Program

Indigenous Reconciliation Medicine Wheel Garden

https://docs.google.com/document/d/e/2PACX-1vT9XQWQosts7HZFUfP5rf17TYJSE-5D3H8koLH6ahec-qDeYzmPK3INX1rrSAWMHMmoYzpZ5imf6Y29/pub


The Canadian National Collection of Insects and its Relevance to the Biological Subjects Covered in SBI4U






The Canadian National Collection of Insects and its Relevance to the Biological
Subjects Covered in SBI4U  June 21, 2018
M. Beaudin


Introduction
In February 2017, I started a co-op position at Agriculture and Agri-Food Canada in the department of entomology. I had always been fascinated by insects and was excited to get the chance to further learn about insects and increase my understanding and passion for the subject. I was working with Hymenoptera (the insect order containing bees, wasps, sawflies, and ants), and more specifically, Microgastrinae, a subfamily of parasitoid wasps that parasitise Lepidoptera (butterflies and moths).

I thoroughly enjoyed the work that I was doing at the experimental farm. I was databasing specimens, georeferencing records, and curating the Microgastrinae collection. I was so invested in what I was doing that I started working from home, developing a program to facilitate the annotation of specimen photos. Many projects were tackled during that summer. Through the several projects that I had partaken in, I saw a lot of relevance to the subjects that I learned about in my biology course. This essay will discuss how the work I’ve  done in the CNC relates to each unit of the SBI4U course.

Unit 1: Biochemistry
The field of biochemistry is constantly being used throughout the CNC. The collection houses millions of insect specimens. When specimens are being added to the collection, they first need to go through a conservation process called critical point drying (CPD). CPD uses biochemistry technologies to ensure that specimens are kept in optimal conditions. I had previously written an description of the process of CPD, restated here.

The CPD method keeps the natural shape of insects and optimizes their conservation. CPD uses the critical point of a substances to quickly replace the liquid inside a specimen with gas, removing its internal fluids and causing it to be keep its’ structural integrity. Using the critical point of water to dehydrate the specimen would not be feasible, since its’ critical point lies at 374 °C and 229 bar (1 bar = 100 000 Pa), where any biological sample would be destroyed. To overcome this problem, water is replaced with liquid carbon dioxide (CO2), whose critical point lies at 31 °C and 74 bar. This is more appropriate for biological applications and relatively easy to maintain. Since CO2 is not miscible with water, the water naturally contained within an insect must be replaced fluids like ethanol or acetone - which are miscible in both water and liquid CO2 - before being put in the CPD machine. This is why the specimens are dehydrated with ethanol beforehand. In the CPD machine, the alcohol-filled specimens are replaced with liquid CO2. The temperature of the machine increase until it reaches 35°C. The CO2 then turns into its gaseous form and is slowly released from the specimens.” -M. Beaudin

The unit of biochemistry is also heavily related to what I do in the CNC because it covered the carbon chemistry of life. Insects are all composed of carbon-based molecules just like humans are. They are also made up of animal cells, containing the organelles discussed in the unit. I can look at hundreds of wasp specimens under a microscope every day, but it wasn’t until after reading this unit that I understood the specimens on a cellular level.

Unit 2: Metabolic Processes
The CNC also relates to metabolic processes in a more indirect way. Firstly, it should be noted that the main goal of my work at the CNC is to find relationships between parasitoid wasps and agricultural pests. Agricultural pests are insects that have the potential to decrease or completely devastate the yield of farmed crops. This field is important because it informs us of methods we could be using to increase our food production - and as we all know, food is very important. But it wasn’t until I read this unit that I learned why food is important. I learned about how food is used as the energy source of all metabolic processes with our body. I also learned about the complex processes involved in photosynthesis. I learned about how light energy energized electrons to produce ATP in the light-dependent reactions of photosynthesis. I learned about how chlorophyll is used as a pigment that captures light energy at specific wavelengths. Now, when I go the to experimental farm and look at the crops that are being grown, I will know how the plants are gaining energy their from the sun, and how we are gaining energy from them when we consume them.

Unit 3: Molecular Genetics
As I put more and more effort into my work at the CNC, I was able to be trained in laboratories at the research centre. I was trained in the DNA extractions of bees. I performed gel electrophoresis, Polymerase chain reaction, and DNA sequencing using a MiSeq system. The training will be put to two weeks from now when I will be running sequences on the genera of Microgastrinae and learning about their phylogenetic relationships. This was all very heavily related to the unit of molecular genetics. It was to the point where I was reading about gel electrophoresis and PCR running and would excitedly think: “Hey, I’ve done that!”. It was interesting to learn more about DNA and RNA, their structure and how they are transcribed. I used to feel like I was following the protocols at work and not truly understanding what I was doing. If the protocol said to place 8μl of reverse primer into the PCR plates, then I would simply but 8μl of reverse primer into the PCR plates, but I didn’t know what reverse primers were - now I do! This unit has given me so much knowledge on how DNA carries hereditary information in living organisms and how DNA replication is checked and edited by enzymes. This information is something that I will carry with me as I continue to perform DNA extractions, PCRs and DNA sequencing!

Unit 4: Homeostasis
The unit of homeostasis can be related in a clever way to what I do at the CNC. It can be related because throughout my day there, from taking photos of specimens with a digital microscope to identifying the genera of Microgastrinae specimens, my body needs to maintain homeostasis. This unit has taught me about the feedback mechanisms that maintain homeostasis within my body as well the anatomy and physiology of the human body. Another key concept that this unit covered is stress. There are several times at work when I start to feel stressed. Whether it be because of a deadline or a mistake that I made in the lab, I have gotten stressed a fair amount while at work. This unit was taught me how my body is reacting to stress and how it can be managed. I will take what I have learned from this unit and put it to use the next time that I feel myself getting stressed at work or elsewhere.

Unit 5: Population Dynamics
Perhaps the most heavily related unit, population dynamics covers so much of what I do at the CNC. I study the population dynamics of Microgastrinae. I analyze the relationships between the microgastrine population, their host population, the host plant population, and compare with the human interferences of urbanization and technological development. I study the interactions between the parasitoid wasps and their host species. The interaction would fall in the “parasitism” category of population interactions, as Microgastrinae gain nutrients from a host larva and kill the larva in the process. I also get to study the defense mechanisms used by the caterpillars in an attempt to avoid parasitism. The caterpillars display both behavioural defences as well as physiological defences. The behavioural defence that the caterpillars demonstrate are a series of convolution-like movements that impede the wasp from landing on the larva and inserting her eggs. Another behavioural defence that some caterpillars demonstrate is to spend most of their time on the underside of  a leaf. It is thought that this reduces the chances of the caterpillar getting spotted by the parasitoid. There are a few different physiological defences that caterpillars have adopted. (See figure below). Some of the caterpillars have dorsal spines, needles, or hairs that help prevent parasitoids from landing on them. Certan caterpillars also demonstrate warning colouration, which is the use of a certain colour pattern to warn predators that the caterpillar is toxic. Warning colouration does not come into play in the parasitoid-host relationship because parasitoids are highly host specific and are adapted to the hosts body, whether certain aspects of it are toxic or not.

Warning Colouration in Danaus plexippus    Spines on Hyalophora cecropia

I have also contributed to two papers at the CNC which are related to population dynamics. One regarded a species of potential importance in the biological control of a pest of amaranth (an ornamental and agricultural plant cultivated throughout the world), and the other regarded species of Microgastrinae in the Canadian Arctic Archipelago and Greenland. It was an amazing experience to help collect data and edit these papers, and I've learned valuable information about entomology, population dynamics, and relationships betweens different species.




Banting Green June 2018 Special Edition: Alexander Grove Park Tree Identification Project


Alexander Grove Park Tree Identification Project
https://docs.google.com/document/d/e/2PACX-1vRO73fWmDVNB_kTwJ3-ys56dwjV7bV07iD_Ch1xwh4hSKbN5z6uFtCCmGHT-V5JH1smL1-LqaIvzsbP/pub


SNC4M Part B: Article Review

Click here to view

SNC4M Part D: Projects

Click here to view

Friday, April 20, 2018

Parasitoid Wasps at the Canadian National Collection of Insects (CNC)


Parasitoid Wasps at the Canadian National Collection of Insects (CNC)

In February 2017, I started a co-op position at Agriculture and Agri-Food Canada (AAFC) in the department of entomology. I had always been fascinated by insects and was excited to get the chance to further learn about insects and increase my understanding and passion for the subject. I was working with Hymenoptera (the insect order containing bees, wasps, sawflies, and ants), and more specifically, Microgastrinae, a subfamily of parasitoid wasps that parasitise Lepidoptera (butterflies and moths).

My co-op started off smoothly and soon became the part of my day I looked forward to. I was databasing specimens, georeferencing records, and curating the Microgastrinae collection. I was so invested in what I was doing that I started working from home, developing a program to facilitate the annotation of specimen photos. I was soon offered a full-time paid position from May to August in 2017. Many projects were tackled during that summer. I was taking photos of specimens with a digital microscope and trained in the identification of Microgastrinae genera. Of these projects, two that took the most time and effort were my contributions to two scientific papers dealing with Microgastrinae species. One regarded a species of potential importance in the biological control of a pest of amaranth (an ornamental and agricultural plant cultivated throughout the world), and the other regarded species of Microgastrinae in the Canadian Arctic Archipelago and Greenland.

It was an amazing experience to help collect data and edit these papers, and I've learned valuable information about entomology and the research world throughout the process. One of the most important ideas that I am taking away from this experience is that insects are an essential class that play vital roles within their respective ecosystems. They also play a critical role in terms of commercial agriculture. Their ecological and economic importance are only two reasons why the research done in the field of entomology can be of vital importance.



Thursday, March 22, 2018

Banting Sort-It-Out Recycle Game


Here is the Banting Sort-It-Out Recycle Game created by Banting Student Sean O'Hara after Banting Students completed our waste audit and also went  Class to Class with the Sort-It-Out Challenge with blue, black, garbage and compost items for classes to sort. This Kahoot Challenge will help reinforce what was learned in properly sorting out our blue, black, compost and garbage items. You may need to sign up first for Kahoot to play

https://play.kahoot.it/#/?quizId=2612724c-c3c2-445c-89e0-b7434b6cc6c0


Thursday, March 8, 2018

Reducing Plastic coffee Cup Lid Waste through Change.org Petition - A Reflection



I found this Petition important not only for the changes we hope to make to reduce plastic waste in the world but also because Janet showed me, Hayden, and Darren that WE could make a change.

We would spend stretches of time arguing with her and being close minded about taking a stand so others could hear our voice. We thought that people and corporations would not listen. After creating the petition about making a change to compostable coffee cup lids to reduce plastic waste we are seeing that others care about the same issue and the health of our planet.

At first we thought of our course summatives "Advocacy Action For The Health of Our Planet and Ourselves" as just a task. By following through with our actions we proved to ourselves that change can be made. Three weeks after creating our petition to reduce plastic coffee lid waste directed at Tim Horton's, Starbucks and McDonald's we now are about to reach almost 4000 signatures. We also wanted for these corporations to promote the Lug-A-Mug concept and for all the people that buy their coffee and tea to also bring their own mug or cup.

We didn’t believe we would get many signatures because we thought no one would really care to take action with us. We "gloomed and doomed" thinking that it was too late to make change for the health of our planet.

Enough people are commenting and supporting our Petition and the signatures just keep adding up day-by-day. With all the support from individuals we want Tim Horton's, Starbucks and McDonald's to take action and reduce the plastic waste created.

Janet proved to us that anyone can make a change all we have to do is try.

Owen Ngo

Monday, March 5, 2018

Banting Green Special Edition November 2017


Banting Recycling and Garbage Audit Rational, Procedure, Data and Analysis     November 2017
 By Owen NGO


We as a society produce way to much garbage and waste too much food. The worst part is, even though we produce this much garbage we can’t even put it in the right place.


In Canada we produced 777 kg per capita of municipal waste in 2008, that’s twice as much as the best performer, Japan. Over 75% of waste is recyclable, but only about 30% of it actually gets recycled.  That’s ridiculous considering that 93% of Canadian households have access to some form of recycling program. One fact that’s hard to hear is that Canada ranks last place out of 17 countries and gets a “D” grade on the municipal waste generation report card.
What I’m trying to get at is that we need to take into account where we put our waste and how much waste we produce as well. A way we can help people put waste in the right place and track how much waste we produce within our school is to do a waste audit.
What we can do is have a few students from the science room help because it can fit into their course expectations. Basically what we want to do is have a few students go around the school to weigh the garbage of every class/room in the school and to see if they see if they have placed the waste in the wrong bin. This baseline waste audit will be a snapshot of how the school is doing. Once we have weighed each bin - Blue, Black, Compost and Garbage we will do a final sort out.  Every Friday we have a school wide recycle collection from the week. Students in each class sort our their blue, black and compost and bring it to science for the final check and rating before being placed in the Green, Blue and Black Bins outdoors.  put them in their rightful place. The goal of the audit is to raise awareness and control the weight of how much garbage the school of Frederick Banting produces each year and to further help us  put all the waste produced in their rightful place as well. A waste audit helps determine how much waste is produced by each student in the school every year. Our school got ranked Gold for Eco-schools for the last three years so let’s keep it that way.
How to: You’re going to need a few students to help with this along with a scale and empty bins (garbage,blue,black,and compost).

  1. Record the weight of a students who will be stepping on the scale with the bins
  2. Record the weight of the student holding each type of empty bin (garbage,blue,black,and compost) and subtract the original weight from the weight of the bins, Now you have the weight of each empty bin.
  3. Go around class to class weighing all the bins and subtract to the weight of the empty bin and the students weight from the new given weight. Now you have the weight of the waste:  including compost, blue, black and garbage.
  4. Record all your findings in a table.
  5. Add up the weight of each type after you’re done (garbage, compost, plastic recycle, paper recycle) for each class and area in the school. Our black, blue and compost is collected every Friday so by doing our waste audit on Friday we are recording 5 schools days of recyclables. The garbage is collected daily by the custodian so on our Friday Audit Day the weight of the garbage weighed was for Friday gives a snapshot of  the total weight of 1 day’s garbage.
  6. Multiply by the amount of school days in a year (194 days).
  7. Divide the weight by the amount of students in the school. That will give you the average amount of garbage each student in your school will produce a year.  
(Total weight of 1 day’s garbage ✖194 school days in a year ➗ Number of students in the school) = (Amount of garbage each student produces in a year)
Our class had 4 team members working on this project including myself, Owen Ngo (Team Leader), Dylan Green, Josh Eardley and Ariane Chartrand. Here we are!



Banting Blue, Black, Compost & Garbage Audit Data
November 2017  Compiled by Owen Ngo Team: Owen Ngo, Dylan Green, Josh Eardley, Arianne Chartrand
Room
Blue bin/5 days*
Black bin/5 days*
Compost/5 days*
Garbage/day*
Rm 1
0.5 Kg
4.5 Kg
200g
3.5g
Rm 2
0.5Kg
0.5Kg
45g
133g
Staff Rm
1Kg
0.5Kg


Rm 4
0.5Kg
2Kg
6g
0g
Rm 5
0.5Kg
3.5g
1500g
383g
Rm 6
n/a
n/a
n/a
n/a
Rm 7
0.5Kg
1.5Kg
55g
27g
Rm 8
1.5Kg
0.5Kg
180g
108g
Rm 9
0.5 Kg
2.5Kg
0g
43g
Rm 10
n/a
n/a
n/a
n/a
Rm 14
0.5Kg
0Kg
35g
16g
Guidance Classroom
0g
1Kg
300g
59g
Safe Schools
2kg
3.5kg
0g
0g
Front Hall
3.5kg
3.5kg
283g
23g
Photocopy Rm
0kg
1.5kg
0g
0g
Office
3.5kg
0.5kg
500g
0g
Student KItchen
1.5kg
3.5kg
180g
0g
Front Washroom
(Boys)
0kg
0kg
500g
0g
Front Washroom
(Girls)
0kg
0kg
500g
18g
Back Washroom
(Boys)
0kg
0kg
500g
28g
Back Washroom
(Girls)
0kg
0kg
500g
18g
Staff Washroom 1
0kg
0kg
30g
0g
Staff Washroom 2
0kg
0kg
30g
0g
Staff Washroom 3
0kg
0kg
0g
0g
Total
16.5 kg/5 days*
29 kg/5 days*
5344g=
5.34 kg/5 days*
869.5g=
.87 kg/day*

*Note we collect Blue, Black and Compost Weekly on Fridays and the garbage is collected by custodian daily. The weights measured  for Blue, Black and Compost are for a previous 5 day period while the garbage is for that day. In the final calculations we converted the Blue, Black and Compost figures into a daily rate.

Diversion rate: The rate or percentage of recyclable material that has been diverted out of the waste disposal stream and therefore not put into landfills.
Diversion Rate = (Total weight of 1 day’s garbage  + Total weight of 1 day’s recycling) = (Total Kg of waste)
0.87kg + (16.5kg+29kg+5.34kg)/5 =
0.87 kg + 50.84/5 =
0.87 kg garbage + 10.16 kg recycling =
11.03 kg total waste in 1 day
Total weight of 1 day’s recycling  ➗ Total Kg of waste  ✖ 100% = Our school’s diversion rate.
10.16 kg total recycling /11.03 kg total waste x100%=
.9211x 100% = 92% Waste Diversion/day
Banting Diversion Rate = 92% Waste Diversion/day
Our schools waste diversion rate is 92% which means 92% of recyclable material has been diverted out of the waste disposal system and therefore NOT put into landfills. Since starting composting in the washrooms our custodians have noted much less garbage than previously!